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Abstract
Typically the rampdown phase of a shot consists of a decrease in current and injected power and
optionally a change in shape, but there is considerable flexibility in the rate, sequencing, and
duration of these changes. On the next generation of tokamaks it is essential that this is done
safely as the device could be damaged by the stored thermal and electromagnetic energy present
in the plasma. This works presents a procedure for automatically choosing experimental
rampdown designs to rapidly converge to an effective rampdown trajectory. This procedure uses
probabilistic machine learning methods paired with acquisition functions taken from Bayesian
optimization. In a set of 2022 experiments at DIII-D, the rampdown designs produced by our
method maintained plasma control down to substantially lower current and energy levels than
are typically observed. The actions predicted by the model significantly improved as the model
was able to explore over the course of the experimental campaign.
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1. Introduction

The termination phase of a shot is an essential part of tokamak
operations for all machines present and future. In this phase,
the plasma current is decreased as much as possible while
attempting to avoid disruptions until confinement is eventu-
ally lost. Currently, a large fraction of the disruptions that
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occur during machine operations occur during this termina-
tion phase. For the current generation of machines, disrup-
tions are usually tolerable because they cause little damage.
For ITER and future fusion reactors geared toward power gen-
eration, disruptions pose a significant concern. At ITER, the
specified total number of major disruptions assumed for the
design of ITER components is 3000 (equating to 10% of the
anticipated full-performance pulses) [33]. Special emphasis is
placed on avoiding vertical displacement events. In an analysis
of future tokamak power plants [27], it was found that ‘the dis-
ruption handling requirements for achieving <$100MWh−1

LCOE are extreme’. Therefore, identifying operating regimes
and control strategies that reduce disruption risks is vital in
order to remain within these limits. The physics of disruptions
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is poorly understood—most progress of physics during disrup-
tions has been made by solving the extended magnetohydro-
dynamic (MHD) equations with codes like NIMROD [39] in
order to explain observed phenomena. What is more, as out-
lined by [11, 22], disruption prediction is a harder task still due
to the disparate disruption causes, so empirical models are the
state of the art and are far from perfect [15].

In the termination (or rampdown) phase, a number of con-
current changes must be made to the plasma state: the plasma
current must be decreased to zero, the auxiliary heating power
must be removed (which will precipitate the H to L-mode back
transition and a consequent decrease in kinetic energy if it has
not already occurred), and density must decay. While these
changes are occurring, a number of operating and stability
limits of the plasma must be respected in order to avoid dis-
ruption and consequent damage to the device. Of paramount
importance is the maintenance of vertical stability (VS), which
is related to the inductance ℓi, βp, and the elongation κ as
discussed in [44]. The VS limit differs across machines, and
at DIII-D benefits from the presence of poloidal field coils
located close to the plasma that can respond quickly. The
Greenwald density fraction fGW = nπ a2

Ip
[17] is another key

quantity of interest during the rampdown and can cause disrup-
tions when it exceeds 1 as Ip decreases unless density concur-
rently decreases. The Greenwald limit is an idealized quantity
and work such as [16] continues to sharpen our understand-
ing of density limits on different devices under various condi-
tions. Another potential concern during rampdown is the pres-
ence of a variety of MHD instabilities in the plasma, which
can cause the plasma to disrupt if they grow too large. Finally,
there is a possibility that the plasma undergoes a radiative col-
lapse, where there is no longer sufficient kinetic energy to
maintain stability. One possible cause of this is excessive radi-
ation due to impurity accumulation. In this work we explore
the optimization of rampdowns using a Bayesian optimization
(BO) strategy. Before further explaining the contributions of
this paper, we first give some background on BO in the context
of machine learning (ML).

1.1. Related work

1.1.1. Rampdown optimization. Prior works [41, 44] have
addressed the termination phase through optimization and
study via models derived from first principles. In this work,
we aim in contrast to address this problem through an ML
based method for rampdown trajectory design. In [44], a large
scale analysis of the components of stability of rampdowns
was conducted across many of the world’s tokamaks; here,
the goal was to describe and analyze the key physical phe-
nomena that determine whether a rampdown is successful or
disrupts prematurely. The authors identify the relationships
between the change in elongation, decrease in power, and
decrease in current that underlie the control developments in
this work. Another study was conducted in [41], where numer-
ical optimization was conducted over rampdown trajectories
using the RAPTOR simulator. The plasma was successfully

ramped down using the design given from the optimization
solution on both the TCV andASDEXUpgrade tokamaks. The
key differences between that work and this one are that here
there is a data-based approach to rampdown design rather than
a simulation-based and there was a large-scale experimental
campaign at DIII-D in contrast to study of a pair of shots on
different machines. In [3], the authors develop an emergency
shut-down procedure which involved transitioning to a limited
topology in order to maintain control down to a safe current
level. Our work addresses the nominal rampdown in a sim-
ilar spirit, but we use an ML based methodology to design the
trajectory. Finally, in [15], the authors propose an ML-based
controller which predicts disruptivity. During the rampdown
phase, future disruptivity is predicted in real time. If at any
point the disruptivity prediction exceeds a threshold, an off-
normal response is triggered that begins a fast rampdown of
the plasma current in order to disrupt at a safer level. This feed-
back control mechanism is complementary to this work—we
focus on the design of feedforward trajectories which avoid
disruptions in advance while this method reacts in a closed-
loop fashion.

1.1.2. BO. There is a large literature focusing on optimiz-
ation of black box functions [14]. The usual assumption in
BO is that the function of interest f :A→ R for some action
spaceA is drawn from a Gaussian process prior or is bounded
in the relevant norm. A typical procedure for BO is to iter-
atively estimate the function of interest using all observations,
use the estimate to compute an acquisition functionα :A→ R
that prospectively evaluates the benefit of observing a new
datapoint (a, f(a)) at some point in the domain, finding the
maximizer at = argmaxa∈Aα(a), and querying the black box
function f(at). This process is repeated until the budget for
queries is exhausted. Acquisition functions such as upper con-
fidence bound optimization [40], Thompson sampling [32],
and expected improvement [20] have been developed and ana-
lyzed in the preceding decades. These methods have been
applied to optimize functions observed in real systems includ-
ing in the feedforward control of robots [42], hyperparameter
tuning of ML models [21], and even the design of recipes
for chocolate chip cookies [38]. This work uses approxim-
ate BO to find a feedforward rampdown trajectory that avoids
disruptions.

Many works address a generalization of this setting known
as contextual BO [6] wherein the domains of f and α are aug-
mented with context x in some context space X and the goal
is to find a policy π : X →A that finds optimal actions for
each context. This work does not address the contextual setting
though we believe it a promising direction for future work.

1.1.3. Learning-based control in fusion. Typically in
learning-based control, an agent interacts with an environment
by alternately executing actions and receiving observations.
The agent then adjusts its decision-making policy based on
the information it has collected in a way which aims to optim-
ize some objective. In this work we use ‘agent’ to refer to a
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generic decision making entity (as in [25]) though it is most
often used to refer to the reinforcement learning setting. In the
broader ML world, the greatest successes of learning-based
control methods have inevitably come when the agent has the
ability to collect a large number of samples using its current
policy in the ground-truth environment. This has happened
most notably in games like Atari [28], Go [36], and Chess
[37] but also plays out in domains where there is a fast and
accurate simulator of the system. In [12], reinforcement learn-
ing was applied to a simulator of current and shape dynamics
in order to find a policy which was successfully able to achieve
a desired shape on the TCV tokamak. However, shape control
is typically achieved using hand-designed and more inter-
pretable controllers [45] for the same reason that the simula-
tion was accurate: the underlying dynamics of shape control
are relatively easy to model. For kinetic control or other more
challenging problems, the direct sim-to-real transfer approach
may be more difficult. To address this, works like [7, 35]
learn a policy from dynamics models trained on previously
logged data collected by the experiments that have been run on
KSTAR and DIII-D, respectively. These works fall under the
so-called ‘offline reinforcement learning’ setting [24]; there
are inherent challenges associated with this setting such as the
fact that the training data was generated by some other policy
(fusion scientists running experiments) rather than the agent.
Another direction that has been explored is that of finite-set
control with a learned model as in [1], where the controller
predicted future states for a finite set of actuator settings and
chose the one which was predicted to be closest to the tar-
get temperature profile. Yet another learning-based control
method was deployed in [15], where a decrease in injected
power was precipitated by a learned disruptivity model. In
each of these works, a model was fit to a static dataset and
used to make control decisions for the tokamak. As tokamak
time is exceedingly limited, it is often infeasible to train con-
trollers in an online fashion (on the machine, with opportunity
for the agent to learn from its previous experiences) for fusion
applications.

1.2. Contributions

In this work, we took advantage of a rare exception to the
preceding statement: during the 2022 operations on the DIII-
D tokamak we undertook a (relatively) large-scale study of
online data-driven rampdown designs. This was made possible
by our ‘piggyback’ experimental design in which wewere able
to vary the parameters of rampdowns at the end of shots for
which the primary experimental data was to be collected dur-
ing the flat-top phase. After choosing a parameterization for
a feedforward control trajectory and a cost function for the
desired rampdown behavior, we projected historical DIII-D
data onto our action space and trained probabilisticmodels that
predicted the cost incurred by the rampdown from the action
chosen. We first executed the optimal action according to the
model several times. Then, we began choosing actions accord-
ing to a handful of data acquisition functions taken from the
BO literature in order to efficiently explore the design space

of rampdowns. After running a few dozen trials in this way,
we executed the optimal action according to an updated model
several times.

With the caveat that we could not control the initial con-
ditions of the rampdowns in our tests, we found that when
compared against the other shots at DIII-D (either those from
the same experiments or the broader dataset) our rampdowns
were significantly better at reaching low currents prior to dis-
ruption with a mean current at disruption 2.5× lower than
the DIII-D average. The rampdown designs improved over the
course of our experimentation as a general trend and that the
final optimum outperformed the initial optimum found, show-
ing that the exploration was helpful in improving our estimate
of the optimal rampdown. Our methodology is fairly general
and could in principle be used for other feedforward trajectory
design problems in plasma control in the future.

In section 2, we present the rampdown optimization prob-
lem setting and discuss the assumptions made in order to sim-
plify our procedure. Section 3 describes the methods used,
including data processing, ML methods, and our experimental
protocol. Section 4 presents the results of our initial mod-
eling exercise as well as a quantitative discussion of our
experimental results. In section 5, we analyze pairs of shots
from the test and control set in order to understand what
might be driving the observed differences in performance.
In acknowledgments section, we conclude by discussing the
work in a broader context and give an idea of future directions.

2. Method

At a high level, our approach is simple: given an action
space A and a cost function C we aim to find the action
a= argmina∈AC(a) by making queries to C using various
actions a. In order to do so, we need to find actions which effi-
ciently search the space of possibilities and take into account
the values of C obtained by executing various actions. At the
ith trial, the action ai is chosen by approximately maximiz-
ing some criterion αi(a) which we refer to as an acquisition
function that can be derived from a probabilistic estimate Ĉi
of the cost function C. We execute ai for one or more exper-
iments. Then the we run a script to ingest the additional data
from the tokamak, process it so that it can be use to fit another
ML model Ĉi+1, and generate a new action by optimizing the
acquisition function αi+1. By iterating this process for n itera-
tions we aim to discover an action â∗ = argmina∈A Ĉn(a) that
is the ‘best guess’ for the best action design. Though this work
focuses on the application of this general loop to the ramp-
down design problem, it is in principle applicable to a much
wider set of problems. There is a diagram of the overall loop
in figure 1.

First in section 2.1, we describe the choices for A and C.
Next, in section 2.2, we describe how we acquire and pro-
cess the data in order to input it into the ML model. Then,
in section 2.3 we discuss the ML methods used to estimate
C and the acquisition functions used in the paper. Finally, in
section 2.4, we describe the protocol for executing actions on
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Figure 1. Diagram of overall method. Here, the process of executing the actions that optimize the acquisition function and observing their
results is shown.

the DIII-D tokamak in a series of piggyback experiments span-
ning most of 2022.

2.1. Problem setting

We address the rampdown problem as a BO problemwhere the
action space A is the space of designs for rampdowns and the
cost function aims to capture the damage that might be done
by a particular rampdown. In making this choice, we explicitly
ignore the problem of context—that is, we mostly ignore the
state of the plasma at the time the rampdown is initiated and
search for a specific rampdown design rather than a function
mapping the plasma state to a rampdown design. This choice
was made for simplicity of modeling and optimization, but
we also note that it is not generally possible to know exactly
the state of the plasma at the end of the flat-top phase prior to
the shot. It also was made in light of the fact that we would be
running these experiments in a piggyback capacity after other
experiments at DIII-D and therefore we would have very little
control or even information about what the state of the plasma
would be at the end of the flat-top phase. We also are only
addressing feedforward control and explicitly leaving the feed-
back control to existing systems. This choice allows the flexib-
ility to explicitly change the controller behavior based on new
information without recompiling the plasma control system.
We give a diagram of the overall loop in figure 1.

In order to specify the optimization problem, we must
define an action space and an objective function.

2.1.1. Action space. Stemming from prior work [3], we
decided that it was most practical to vary three actuators:

• power injected from the neutral beams (pinj)
• current (Ip)
• elongation of the plasma shape (κ).

As a rampdown design requires all of these to be varied in time,
we needed away to parameterize the trajectory of each of these
actuators over time starting from the programmed beginning
of the rampdown. As we aimed to conduct piggyback experi-
ments, we explicitly do not consider any changes to shot pro-
gramming prior to the beginning of the rampdown phase. After
considering a handful of methods, we decided on a piecewise
linear (PWL) function for each, which we represented with
three parameters: delay (t0), rate (r), and duration (∆t), which
we collectively call θ. We depict these in figure 2. This para-
meterization also leaves as a free variable the initial value x0 of
each trajectory as these may vary depending on the design of
the shot at rampdown. When we execute a PWL action para-
meterized by θ in a piggyback, we use the value of x0 from
the beginning of the rampdown in the nominal shot trajectory
in order to concretely generate the feedforward rampdown tra-
jectory. Then for a particular signal xθ(t) starting at time t= 0
with initial value x0, delay t0, rate r and duration ∆t the value
is given by

xθ (t) =


x0 t⩽ t0
x0 − r(t− t0) t0 < t⩽ t0 +∆t

x0 − r∆t t0 +∆t< t.

(1)

Since we need a PWL representation of the action for each
of our three actuators, our action representation a ∈ A has a
total of nine parameters a= [θpinj,θIp,θκ] that represents the
3D time series [xθpinj ,xθIp ,xθκ ].

2.1.2. Objective function. The primary goal of a rampdown
design is that it is safe against disruptions. In particular, dis-
ruptions at high levels of current are of concern to operations
at tokamaks as well as the uncontrolled release of the vari-
ous forms of electromagnetic and thermal energy stored in the
plasma. In all applications ofML, the design of the objective is

4



Nucl. Fusion 64 (2024) 046014 V. Mehta et al

Figure 2. Depiction of an example action in our piecewise linear parameterization for current, elongation and injected power. This example
is a stylized drawing of shot 188823.

especially critical. One of the fundamental choices is whether
to shape the objective function in order to encourage behavior
that is thought to lead to outcomes consistent with the ultimate
goal. In other words, one might add an instrumental goal to the
objective function in the hopes of encouraging behavior that
leads to the ultimate goal. This is often done in artificial intel-
ligence (AI) research contexts [19] by e.g. adding a reward for
advancing toward a target state even though the objective is
actually only to attain it. In this work, we used an objective
function with some reward shaping with the ultimate goal of
reducing the current at disruption time. Our cost function for
an action a as described above is

C(a) =

(
I tDp

106atDminorB

)2

+ 10−6W tD
MHD + |q095 −min

t>0
qt95| (2)

where tD is the time of disruption (as marked by the time at
which the current quench occurs), xθIp(tD) is the plasma cur-
rent at the time of disruption, atDminor is the minor radius at the
time of disruption, B is the magnetic field,WtD

MHD is the MHD
energy of the plasma at the time of disruption, q095 is the safety
factor 95% of the way to the edge at the beginning of ramp-
down, and qt95 is the same safety factor at times during the
rampdown.

The first two terms of the objective are the electrical and
MHD energies of the plasma. These relate to the objective of
controlling the plasma to as low of an energy content as pos-
sible before a disruption. The third term penalizes any ramp-
down where the safety factor, q95, drops below its initial value
over the course of the rampdown. This term is an example of
the reward shaping mentioned earlier: as q95 is a key determ-
inant of the stability of the plasma [8], we encourage our agent
to keep it from decreasing. Additionally, this reward is roughly
unit-scale, which simplifies the modeling process.

2.2. Offline then online data processing

In order to achieve an initial offline estimate of the objective
function C, we fit a model to historical data from DIII-D. The
data processing consisted of three steps: collection, prepro-
cessing, and featurization. In the collection phase, we pulled
data about historical DIII-D shots numbered 120000–188814,
which run from 2004 to April 2022. from the MDSPlus data-
base as in [1] in 50ms windows. In particular, we collected
the information about the action space: target plasma current,

injected power from the neutral beams, and elongation as well
as for the cost function: safety factor near the edge (q95), minor
radius, and MHD energy as computed by EFIT01. For the cost
function we also collected the time of disruption (as marked
by the current quench) and the plasma current at that time.
In order to do so, we used a technique developed in [3]. The
time of current quench is determined by searching for dIp/dt
passing a very high threshold (−14MA s−1) for reduction in
plasma current after which the plasma current never recovers.
The beginning of this very fast final Ip drop is the time which
the current quench begins, and is used for the current quench
time in this work. Our method then double checks that this
drop was not programmed as part of the desired trajectory of
the shot. In some cases the plasma recovers after a very large
transient event. The code ignores this phenomenon and skips
forward to the final (actual) disrupting event.

Finally, we also collected the times at which the rampdowns
were programmed to start in order to know at what time the
agent could have begun to modify the controls.

In order to make sure that the data were usable for ML,
it was preprocessed into a form that made it suitable for fea-
turization. Much of this involved removing shots which were
unsuitable for use in this study. We removed shots for which
any of the following occurred:

• Shot disrupted prior to originally scheduled rampdown or
within 50ms of rampdown beginning.

• Shot data in relevant fields contained at least four consecut-
ive NaNs (lasting 200ms).

• PWL action projection could not achieve sufficient accuracy
(see below).

This left us with 1173 shots in the original offline dataset from
which to perform regression. This data cleaning procedure was
conservative and led to shots being excluded which otherwise
could have been used. This is important in the experimental
section where certain experimental shots did not pass data fil-
tering checks and are therefore excluded as in figure 5. As the
experiments progressed all subsequent shots were appended to
the dataset including but not limited to those where the ramp-
down was designed by the model.

2.2.1. Projecting historical data to the PWL action space.
For each shot retrieved from the DIII-D database, actuator data
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Table 1. Data acquisition functions and the corresponding uncertainty estimates required.

Acquisition function Uncertainty estimate required Functional form of α

Optimum None −Ĉ(a)
Thompson sampling Posterior sampling −f(a), f ∼ P(C | D)
LCB Epistemic uncertainty −Ĉ(a)+βσe(a)
UCB-LCB Epistemic & Aleatoric uncertainty −Ĉ(a)+β1σe(a)−β2σa(a)

is represented as a time series {ui}ki=0 with ut the scalar values
of the actuator every 50ms. For shots which disrupted during
the rampdown the lengths for the action representation were
padded as if they had gone to their intended conclusion and
disrupted at 50 kA. In order to use PWL representation for the
action space, it was necessary to find some PWL parameters
that approximately corresponded to the time series retrieved
for each actuator in each shot. Thus we solved the following
optimization problem with the curve fitting library taken from
scipy [43], which uses the trust region reflective algorithm [5]:

argminθ ||xθ (t)− ut||22
subject to x0 = u0.

This optimization problem is a projection of the time series of
each actuator onto the space of PWL functions. As these coef-
ficients found were to be used as features for the subsequent
ML estimation, we discarded the shots for which the projec-
tion induced substantial error. Concretely, these were shots for

which ||xθ(t)−ut||22
||ut||22

> 0.1. This was the case for at least one sig-

nal in 34% of the data. The dataset Dn = {(ai,ci)}i∈[n] con-
sisted of the observed actions after all preprocessing as well
as the computed costs.

After performing this optimization and filtering, we fit an
ML model for C and choose an action as described below.

2.3. ML methods

As discussed in section 1.1, there has been a huge amount of
work done in the ML community addressing the BO setting.
The standard approaches involve uncertainty-aware regres-
sion to learn the function C from observations (a,C(a)). The
specific types of uncertainty required are determined by the
acquisition function αi(a) being used.

2.3.1. Uncertainty-aware regression techniques. There
is a substantial literature of uncertainty-aware regression
techniques [2, 30]. This work relied on three representations of
predictive uncertainty: epistemic uncertainty, aleatoric uncer-
tainty, and posterior sampling. Epistemic uncertainty is the
uncertainty in predictions that can be reduced by making
observations and performing inference. Aleatoric uncertainty
is the irreducible uncertainty in a prediction, often because
the system is itself stochastic. Due to the many unobserved
features of the tokamak at rampdown time, there is substantial

uncertainty that could be reduced given perfect observations
but is not captured in the data presented to our model. For
modeling purposes, this is treated this as irreducible given
our assumptions. Posterior sampling is a bit different—given
some approximate prior belief over cost functions P(C), and a
set of observationsDn, we can update our beliefs to an approx-
imate posterior P(C | Dn) and sample from it. This process can
be interpreted as choosing from the set of functions that are
consistent with the observations Dn given prior knowledge.
Many of the tools developed in BO deal with settings where
the black-box function can be fit well by a Gaussian process
regression with some kernel. Even when using empirical tech-
niques like maximum marginal likelihood kernel fitting, we
were unable to find a kernel that gave reasonable predictive
accuracy on our data.

Instead, we used both multilayer perceptrons (MLPs)
(following [29]) implemented in JAX [4] and gradient boos-
ted trees (GBTs) taken from the Catboost package [13] along-
side probabilistic variations and ensembles composed of these
units. In their standard forms, neither MLPs nor GBTs estim-
ate uncertainty. However, this can be easily solved for each
by having the model output the mean (which we write Ĉ(a))
and standard deviation σ̂(a) of the response variable and
training them via maximum likelihood [26]. We follow [10]
in using σ̂(a) for an estimate of the aleatoric uncertainty
σa(a), while the standard deviation of the mean predictions
of ensemble members Ĉi(a) can be interpreted as an estim-
ate of the epistemic uncertainty σe(a). One also can sample
a single ensemble member Ĉi(a) as an estimate of a function
sampled from the posterior. At every iteration, the model was
trained using all observations that were part of the dataset.
Ensembles consisted of ten members trained on bootstrapped
data sampled with replacement from the training set.

To address the lack of a clear hypothesis over the object-
ive function C, we employed a rotational strategy with dif-
ferent function approximators for each acquisition function.
As discussed below, this involved periodically switching
between various approximators to align with the require-
ments of each acquisition function. Concretely, we alternated
between MLPs and GBTs and then choose the probabilistic
and/or ensemble variant that would provide the uncertainty
estimate required by the acquisition function being used (see
table 1 for these).

2.3.2. Acquisition functions. In order to acquire data that
will facilitate black-box optimization, we use the probabilistic
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estimates of the cost function discussed in the previous section
to compute various acquisition functions αi and collect obser-
vations located at the optimum of these functions. Besides
choosing the optimum of the estimated cost function itself,
we used Thompson sampling [32], lower confidence bounds
[40], and upper/lower confidence bounds as acquisition func-
tions. Thompson sampling relies on the fact that choosing the
optimum of a function sampled from the posterior is equival-
ent from sampling from the posterior over optima. Lower con-
fidence bounds use an optimistic decision rule to choose points
at which the model is either overconfident or correct in its
optimism, thereby ruling out parts of the design space which
could potentially be good. Upper/lower confidence bounds
additionally include a penalty for areas of the design space that
are estimated to be highly noisy. As shown in table 1, each of
these acquisition functions requires a particular type of uncer-
tainty estimate.

Each of these acquisition functions has shown state-of-
the-art performance on some BO problems. Given the uncer-
tainty about which function would best suit this application,
we adopted a strategy inspired by [18]: cycling through these
functions for each subsequent trial. This approach involves
selecting a model which provides the appropriate uncertainty
estimate for the specific acquisition function in use at any
given trial.

2.4. Piggyback experiments

Throughout the course of 2022, we conducted a campaign of
piggyback experiments executing various rampdown designs
after the conclusion of the flat top phase. For experiments for
which the session leader (SL) was amenable to our work, the
mainline experiment could tolerate some disruptions, and the
authors were available, we collected data based on execut-
ing actions chosen according to an acquisition criterion with
maximally up-to-date data. We also made sure to collect data
which used the default rampdown in order to be able to see a
useful control set. At DIII-D the nominal rampdown evolves
over time as SLs modify it, but the default strategy has been a
decrease in current at 1MA s−1 and a complete shutdown of
beam power very close to the start of rampdown. The shape is
changed to a low-elongation and limited plasma shape around
100ms into the rampdown. There are often small changes in
the vicinity of this design. Within an experiment, we would
first allow the SL to run with no modifications on our end
until they were able to achieve a plasma that lasted until
the programmed time of rampdown. For several experiments,
this proved difficult and we were unable to run. Once sev-
eral trials successfully reached the rampdown phase we pro-
grammed in an action generated by optimizing an acquisition
function and executed it several times. Once it had executed
several times, we ran our scripts for ingesting and prepro-
cessing additional data, generated another action, and executed
it as well. This process proceeded across several run days
in 2022.

3. Experiments

3.1. Initial modeling results

The first step was to fit an estimate of our cost function Ĉ
to the offline dataset D. We initially considered models ran-
ging among linear regression, k nearest neighbors, Gaussian
processes, GBTs, and traditional MLPs. Hyperparameter tun-
ing and model selection was conducted using five-fold cross
validation on a training set consisting of 80% of the train-
ing data. GBTs and MLPs performed best on cross validation.
The MLP with learning rate of 3× 10−4 worked well as did
CatBoost [13] with out-of-the-box settings. GBTs achieved
74% explained variance on the test set and the MLPs were
slightly worse at 72%. As can be seen in figure 3, the optimum
found in the initial model calls for a moderately aggress-
ive current rampdown (close to 1.8MA s−1) along with mod-
est change in elongation and an aggressive decrease in beam
power (80MWs−1, an immediate shutdown). The optimum is
not as low-cost as the lowest-cost elements due to the fact that
the model does not predict extreme values as well. An ana-
lysis of the feature importances showed that the ramp rate and
duration for current were the most important features used to
explain the cost function, a result in line with expectations.

3.2. Real-world performance of online BO

After our offline modeling we ran 41 piggyback shots with 16
different synthesized actions across eight different run days at
DIII-D in 2022. The actions were synthesized by optimizing
acquisition functions defined over the GBT and MLP models
as described in section 2.3.We aimed to answer two questions:
(1) did ourmodel synthesize better rampdowns than the default
at DIII-D? and (2) could our exploration strategies cause the
rampdown designs to improve over time through our trials? In
both cases, the answer was yes, with some complexity in the
answer to (2).

To address the first question, we determined two potential
control sets: all rampdowns on DIII-D after 2015 (wide con-
trol) and all rampdowns taken from the same miniproposal (a
document which references a particular experimental alloc-
ation in the DIII-D procedures) as our test shots (same-MP
control). After removing all shots with missing data, the wide
control set was 11 047 shots, the same-MP control set was 25
shots and the test set was 29 shots. The latter two covered a
wide range of plasma conditions, with flat top current ranging
between 0.6 and 1.6MA in the test set and 0.55 and 1.8MA in
the same-MP control set and βN ranging between 0.6 and 2.4
in the test set and 0.4 and 2.2 in the control set. The observed
currents at disruption as well as the computed costs for these
three sets are shown in figure 4. It is clear by inspection that
the shots in the same-MP control disrupted at a similar dis-
tribution of plasma currents to the broader baseline of DIII-D
shots. However, in the test shots, our method was able to per-
form significantly better than was observed in either control
set. The mean current at disruption in the test set, 134 kA, was
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Figure 3. Optimization of a learned model using offline data only. This figure depicts a GBT model mapping θ to the cost function to all
high-quality examples available prior to our experimental campaign and optimized it via grid search over θ. The plots show the historical
observations and the optimum found for three components of θ.

Figure 4. Performance of comparison sets of rampdowns on cost and current at disruption. These are empirical cumulative distribution
functions, so e.g. the median of the observed samples will be the value on the horizontal axis where the curve crosses 0.5 on the vertical axis.

2.5× smaller than the mean current at disruption in the con-
trol set (336 kA) and 2.9× smaller than that of the same-MP
control (389 kA).

After the conclusion of our experimental campaign, we per-
formed statistical tests to assess the possibility that our res-
ults were the result of random chance. Ideally, we would have
chosen a significance threshold for our statistical results prior
to beginning our experimental campaign. However, we did not
do so and can only comment on results after the fact. Based on
the p-values observed in table 2, which give the probability
that differences of at least this magnitude could be observed
between samples generated from the same process, it is highly
unlikely that our results were generated by random variation.
We also compute the modified Cohen’s d, a measure of the
effect size taken by normalizing the difference between means
of two samples by the standard deviations. Typically, 2 denotes
a large effect size [34] and each of our comparisons attains that
threshold.

In particular, it was more clear for the same-MP control that
the cost attained by ourmethodwas an improvement compared
to the current, while the reverse was true for the wide control.

Table 2. Statistical tests of rampdown performance. We used the
Mann–Whitney U-test on the disruption currents and costs observed
in our experiments to compute the p values shown here. We report
the modified Cohen’s d for effect sizes.

p-value/effect size Same-MP control Wide control

Current at disruption 0.027/−2.77 1.7× 10−6/−10.97
Cost 9.9× 10−5/−2.72 0.018/−2.79

This might have been due to the fact that the same-MP control
contained more recent shots where the rampdown has been
optimizedmore for current but not the cost function, leading to
improved performance on the former metric but not the latter
relative to the wider control set. It is again important to note
that these results come with the caveat that we could not con-
trol much of the experimental process due to the piggyback
experiment design.

Figure 5 shows the performance of the test actions over
time. The results are mixed. There is no clear trend in the
series of costs (blue) and in fact the last datapoints that are
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Figure 5. Costs and disruption current observed in test group
experiments as trials were conducted.

not missing from our time series have fairly high costs com-
pared to the others (some investigation showed us that this was
due to a drop in q95 immediately at the beginning of the ramp-
downs). However, the currents at disruption at the end of each
rampdown (red) show a clear downward trend as the experi-
ments proceeded. This trend suggests that over time the model
learned actions that were more reliably able to bring the shot
down to a very low current prior to disruption. One important
caveat to note is that these are modest sample sizes and we do
not have perfectly controlled conditions so it is possible that
our results were the result of statistical fluctuations or unob-
served factors.

4. Analysis

The previous section gave quantitative results of the ramp-
down experiments. This section presents qualitative results
and gesture at how the model may have modified the ramp-
downs in order to avoid disrupting at high current.

4.1. Analysis of selected shots

Figure 6 shows three examples of shots from the test and
same-MP control sets in our study that were taken from the
same experiment. The left example depicts a pair of shots
(a control shot, 192252, and a test shot, 192244) where the
control shot disrupted at around 700 kA. Though they star-
ted from similar initial conditions, the test shot had a slightly
higher ramp rate on Ip and power than the control shot.
The control shot experienced a n= 2 mode that locks around
5200ms and led to an early disruption. The test shot was
able to last longer without such issues until the decreased
current caused the Greenwald fraction to increase and cause
a disruption at a much safer current level. Notably, the test
shot 192244 is the shot with the highest current at disrup-
tion in our test set and thus gives a mild failure case of our
method.

The second example shows three shots: the control shot
191544 and the test shots 191547 and 191548. It seems likely
that 191544 disrupted due to an already-existing n= 1 mode

that was not present in either test shot 191547 or 191548. This
example highlights the difficulties in this piggyback exper-
imental setup: as we were not controlling the conditions of
the flat top we cannot reproduce the conditions at the begin-
ning of rampdown and reproduce the challenges encountered.
Though these two examples here of very similar rampdowns
with slightly slower ramps show good results it is impossible
to know whether they would have survived if given the initial
conditions of 191544.

The final example shows a combination of exogenous and
endogenous factors causing the plasma to safely ramp down.
The control shot (192024) disrupts almost immediately upon
beginning the rampdown due to what appears to be a locked
n= 1 mode. The time of the rampdown was slightly moved
up by the flat-top operators, and our method output a more
gradual IP ramp rate. Together these changes were sufficient
to cause the shot to ramp down smoothly to minimal plasma
current.

4.2. Action selection across experimental campaign

We also inspected the actions output by the acquisition func-
tion optimization in order to understand whether there were
any patterns observable from the data. Figure 7 shows some
components of the action space of particular interest: the rates
of change suggested by the model for power, current, and
elongation. From this, it is clear that the model quickly gives
up on varying the elongation of the model. This could be
because DIII-D has vertical control coils that are very cap-
able and close to the plasma and therefore the model does
not find a decrease in elongation necessary to maintain VS.
A similar study on a different device with less VS control
(ITER, for example) might therefore lead to a rampdown
design that relies more heavily on elongation than ours. In
many shots, there is an unactuated decrease in elongation as
current drops (see figure 6 for examples) and perhaps the
model was able to infer the necessary relationships between
the control requests and the eventual outcomes. The model
explores a range of aggressive Ip ramp rates prior to con-
verging to a healthy but less aggressive ramp rate around
1.2MA s−1. The model also widely explores various settings
for the rate of change of power. The model seems to be some-
what confounded by the range of initial power settings at
the start of rampdowns, which are part of the context for
each shot that the model does not recieve. If the context
had been included in the model, we would expect to see a
more convergent process for injected power. This is a three-
dimensional slice of a nine-dimensional action space so there
are six additional axes of exploration not shown here. In the
future we hope to extend these methods to include context and
in fact to potentially move to closed-loop control in order to
respond to developments in real time. We will also potentially
attempt to control density in order to address an unaddressed
cause of disruptions (the Greenwald limit) from the current
setup.
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Figure 6. Selected paired shots from the test and control sets. Orange is test group and blue/green are control. Shot numbers are given in the
second row.

Figure 7. Rates of change chosen by models over time for current,
elongation, and NBI power.

5. Discussion

We conclude with a discussion of piggyback experiments
using ML more generally. As ML methods are data-hungry

and tokamak time is scarce, it is necessary to either use offline
data or to find applications like this one where nonstandard
opportunities are available to run experiments. We aimed to
keep the experimental andML protocol as constant as possible
as experiments progressed. As discussed in section 3, reward
shaping actually made experiments and analysis more diffi-
cult to run. We encourage practitioners trying similar setups
in the future to keep things as simple as possible in all aspects,
including the data used in decision making and reward com-
putation, the codebase for ingesting data and updating the
models, and in the success criteria. It was crucial to keep
a fixed experimental protocol on our end in the face of the
variation inherent in tokamak operations. ML-driven control
of tokamaks is a promising direction and we hope that our
study design is instructive alongside our results. In settings
where protocols for rampdowns are not available, as with new
machines that do not have these procedures, these methods
might prove particularly valuable in exploring possible traject-
ory designs.

In the previous section, we discussed the ‘convergence’ of
certain components of the actions chosen to some reference
values. There is a large literature [9, 14, 32, 40] discussing
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the rates of convergence of the various data acquisition meth-
ods used here in formal settings. Many of them can be tuned
in order to achieve a desired confidence bound or even to
work backward from a known horizon of experimentation.
Throughout our study, we were highly uncertain about the
number of trials we would be able to execute due to scheduling
and machine operation questions that are familiar to all toka-
mak experimentalists. This made the question of how to tune
our acquisition strategy slightly more difficult.

This work aimed to find a rampdown trajectory that
improved the existing one at DIII-D by trial and error using
strategies from black-box optimization. In experiments over
the course of 2022 we conducted trial rampdowns as piggy-
backs and updated our model with new observations as they
came in. Our rampdowns were able to bring the plasma current
down to an average value 2.5× smaller than is typical at DIII-
D and, based on our statistical tests, our results are unlikely to
be due to chance. However, as we could not control the plasma
state at the beginning of rampdown it is difficult to decouple
disruptions due to physical phenomena present at this time
from disruptions due to poor control.

One exciting direction for future research is in attempting a
similar experimental campaign without the benefit of the exist-
ing DIII-D database but perhaps with the use of first-principles
driven simulators such as those being used for the development
of ITER [23] and SPARC [31]. Although the specific ramp-
down design we developed in this work is unlikely to transfer
to those devices, it is possible that a procedure like this one
could be used to support the commissioning of rampdowns at
each. The efficient and robust commissioning of rampdowns
for these devices will be an important part of their success-
ful operation within disruption constraints. Simulating those
conditions could help us understand the effectiveness of these
methods in a more realistic setting. With all this considered,
we see ample opportunities for additional work of this nature,
both in continuing to optimize and better understand ramp-
downs on DIII-D and at other machines and in applying active
ML methods to other control tasks in fusion research.
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